When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photoautotrophism - Wikipedia

    en.wikipedia.org/wiki/Photoautotrophy

    Eukaryotic photoautotrophs absorb photonic energy through the photopigment chlorophyll (a porphyrin derivative) in their endosymbiont chloroplasts, while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in free-floating cytoplasmic thylakoids or, in rare cases, membrane-bound retinal derivatives such as ...

  3. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    These include photoautotrophs (which use sunlight) and lithoautotrophs (which use inorganic oxidation). Heterotrophs, such as animals and fungi, are not capable of carbon fixation but are able to grow by consuming the carbon fixed by autotrophs or other heterotrophs. Seven natural autotrophic carbon fixation pathways are currently known.

  4. Phototroph - Wikipedia

    en.wikipedia.org/wiki/Phototroph

    Most of the well-recognized phototrophs are autotrophic, also known as photoautotrophs, and can fix carbon. They can be contrasted with chemotrophs that obtain their energy by the oxidation of electron donors in their environments. Photoautotrophs are capable of synthesizing their own food from inorganic substances using light as an energy source.

  5. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Herbivores and carnivores are examples of organisms that obtain carbon and electrons or hydrogen from living organic matter. Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose ), fats and proteins. [ 2 ]

  6. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Other organisms, called heterotrophs, take in autotrophs as food to carry out functions necessary for their life. Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need.

  7. Carbon source (biology) - Wikipedia

    en.wikipedia.org/wiki/Carbon_source_(biology)

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, [1] generally using energy from light or inorganic chemical reactions. [2]

  8. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    [3] [4] Living organisms that are heterotrophic include all animals and fungi, some bacteria and protists, [5] and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. [6] The term is now used in many fields, such as ecology, in describing the ...

  9. Photoheterotroph - Wikipedia

    en.wikipedia.org/wiki/Photoheterotroph

    Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).