Search results
Results From The WOW.Com Content Network
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...
The metre, kilogram, second system of units, also known more briefly as MKS units or the MKS system, [1] [2] [3] is a physical system of measurement based on the metre, kilogram, and second (MKS) as base units. Distances are described in terms of metres, mass in terms of kilograms and time in seconds.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
{{convert|123|cuyd|m3+board feet}} → 123 cubic yards (94 m 3; 40,000 board feet) The following converts a pressure to four output units. The precision is 1 (1 decimal place), and units are abbreviated and linked.
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
[citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth). [2] That is, it is the weight of a kilogram under standard gravity.
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...