Search results
Results From The WOW.Com Content Network
Oxygenated blood from the placenta is carried to the fetus by the umbilical vein, which will drain into the inferior vena cava (IVC) through the ductus venosus or the liver. [5] When oxygenated blood enters the IVC, it moves in parallel with deoxygenated blood from the fetal systemic veins, establishing a bilaminar blood flow as it enters the ...
The fetal membranes separate maternal tissue from fetal tissue at a basic mechanical level. The fetal membrane is composed of a thick cellular chorion covering a thin amnion composed of dense collagen fibrils. The amnion is in contact with the amniotic fluid and ensures structural integrity of the sac due to its mechanical strength.
The first and second arches disappear early. A remnant of the 1st arch forms part of the maxillary artery, [3] a branch of the external carotid artery. The ventral end of the second develops into the ascending pharyngeal artery, and its dorsal end gives origin to the stapedial artery, [3] a vessel which typically atrophies in humans [4] [5] but persists in some mammals.
The fetus obtains oxygen and nutrients from the mother through the placenta and the umbilical cord. [25] Blood from the placenta is carried to the fetus by the umbilical vein. About half of this enters the fetal ductus venosus and is carried to the inferior vena cava, while the other half enters the liver proper from the inferior border of the ...
It contains one vein, which carries oxygenated, nutrient-rich blood to the fetus, and two arteries that carry deoxygenated, nutrient-depleted blood away. [6] Occasionally, only two vessels (one vein and one artery) are present in the umbilical cord. This is sometimes related to fetal abnormalities, but it may also occur without accompanying ...
At the beginning of the ninth week, the embryo is termed a fetus (spelled "foetus" in British English). In comparison to the embryo, the fetus has more recognizable external features and a more complete set of developing organs. Human embryology is the study of this development during the first eight weeks after fertilization.
The pathway of fetal umbilical venous flow is umbilical vein left portal vein ductus venosus inferior vena cava eventually right atrium.. This anatomic course is important to recall when assessing the success of neonatal umbilical venous catheterization, as failure to cannulate through the ductus venosus results in malpositioned hepatic catheterization via the left or right portal veins.
Symmetrical IUGR is commonly known as global growth restriction, and indicates that the fetus has developed slowly throughout the duration of the pregnancy and was thus affected from a very early stage. The head circumference of such a newborn is in proportion to the rest of the body.