When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Connection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Connection_(mathematics)

    These are examples of affine connections. There is also a concept of projective connection, of which the Schwarzian derivative in complex analysis is an instance. More generally, both affine and projective connections are types of Cartan connections. Using principal bundles, a connection can be realized as a Lie algebra-valued differential form.

  3. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  4. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A wider definition of geometric symmetry allows operations from a larger group than the Euclidean group of isometries. Examples of larger geometric symmetry groups are: The group of similarity transformations; [30] i.e., affine transformations represented by a matrix A that is a scalar times an orthogonal matrix.

  5. Connected relation - Wikipedia

    en.wikipedia.org/wiki/Connected_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  6. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    the connection is torsion-free, i.e., T ∇ is zero, so that ∇ X Y − ∇ Y X = [X, Y]; parallel transport is an isometry, i.e., the inner products (defined using g) between tangent vectors are preserved. This connection is called the Levi-Civita connection. The term "symmetric" is often used instead of torsion-free for the first property.

  7. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.

  8. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics , as it has become evident that practically all laws of nature originate in symmetries.

  9. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric