When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prompt neutron - Wikipedia

    en.wikipedia.org/wiki/Prompt_neutron

    In nuclear engineering, a prompt neutron is a neutron immediately emitted (neutron emission) by a nuclear fission event, as opposed to a delayed neutron decay which can occur within the same context, emitted after beta decay of one of the fission products anytime from a few milliseconds to a few minutes later.

  3. Prompt criticality - Wikipedia

    en.wikipedia.org/wiki/Prompt_criticality

    In nuclear engineering, prompt criticality describes a nuclear fission event in which criticality (the threshold for an exponentially growing nuclear fission chain reaction) is achieved with prompt neutrons alone and does not rely on delayed neutrons. As a result, prompt supercriticality causes a much more rapid growth in the rate of energy ...

  4. Delayed neutron - Wikipedia

    en.wikipedia.org/wiki/Delayed_neutron

    In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products (or actually, a fission product daughter after beta decay), any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10 −14 seconds of the fission are termed "prompt neutrons".

  5. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    However, without addition of a neutron poison or active neutron-absorber, decreases in fission rate are limited in speed, because even if the reactor is taken deeply subcritical to stop prompt fission neutron production, delayed neutrons are produced after ordinary beta decay of fission products already in place, and this decay-production of ...

  6. Criticality accident - Wikipedia

    en.wikipedia.org/wiki/Criticality_accident

    The neutrons are usually classified in 6 delayed neutron groups. [4] The average neutron lifetime considering delayed neutrons is approximately 0.1 sec, which makes the chain reaction relatively easy to control over time. The remaining 993 prompt neutrons are released very quickly, approximately 1 μs after the fission event.

  7. Critical mass - Wikipedia

    en.wikipedia.org/wiki/Critical_mass

    Given a total interaction cross section σ (typically measured in barns), the mean free path of a prompt neutron is = where n is the nuclear number density. Most interactions are scattering events, so that a given neutron obeys a random walk until it either escapes from the medium or causes a fission reaction.

  8. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    The mean generation time, λ, is the average time from a neutron emission to a capture that results in fission. [16] The mean generation time is different from the prompt neutron lifetime because the mean generation time only includes neutron absorptions that lead to fission reactions (not other absorption reactions).

  9. Inhour equation - Wikipedia

    en.wikipedia.org/wiki/Inhour_equation

    The prompt neutron lifetime in a modern thermal reactor is about 10 −4 seconds, thus it is not feasible to control reactor behavior with prompt neutrons alone. Reactor time behavior can be characterized by weighing the prompt and delayed neutron yield fractions to obtain the average neutron lifetime, Λ=l/k, or the mean generation time ...