When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hardy–Littlewood zeta function conjectures - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood_zeta...

    In 1914, Godfrey Harold Hardy proved [1] that the Riemann zeta function (+) has infinitely many real zeros. Let () be the total number of real zeros, () be the total number of zeros of odd order of the function (+), lying on the interval (,].

  3. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The non-negative real numbers can be noted but one often sees this set noted + {}. [25] In French mathematics, the positive real numbers and negative real numbers commonly include zero, and these sets are noted respectively + and . [26] In this understanding, the respective sets without zero are called strictly positive real numbers and ...

  4. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.

  5. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    Hardy and J. E. Littlewood formulated two conjectures on the density and distance between the zeros of ζ (⁠ 1 / 2 ⁠ + it) on intervals of large positive real numbers. In the following, N(T) is the total number of real zeros and N 0 (T) the total number of zeros of odd order of the function ζ (⁠ 1 / 2 ⁠ + it) lying in the interval (0, T].

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.

  7. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  8. Positive real numbers - Wikipedia

    en.wikipedia.org/wiki/Positive_real_numbers

    In mathematics, the set of positive real numbers, > = {>}, is the subset of those real numbers that are greater than zero. The non-negative real numbers , R ≥ 0 = { x ∈ R ∣ x ≥ 0 } , {\displaystyle \mathbb {R} _{\geq 0}=\left\{x\in \mathbb {R} \mid x\geq 0\right\},} also include zero.

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    If the function maps real numbers to real numbers, then its zeros are the -coordinates of the points where its graph meets the x-axis. An alternative name for such a point ( x , 0 ) {\displaystyle (x,0)} in this context is an x {\displaystyle x} -intercept .