When.com Web Search

  1. Ads

    related to: how to do fraction derivatives step by step

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The corresponding derivative is calculated using Lagrange's rule for differential operators. To find the α th order derivative, the n th order derivative of the integral of order (n − α) is computed, where n is the smallest integer greater than α (that is, n = ⌈α⌉). The Riemann–Liouville fractional derivative and integral has ...

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is

  4. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The Heaviside step function is an often-used step function. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers, resulting in multicomplex derivatives.

  6. Caputo fractional derivative - Wikipedia

    en.wikipedia.org/wiki/Caputo_fractional_derivative

    In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

  7. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}

  8. NYT ‘Connections’ Hints and Answers Today, Friday, January 17

    www.aol.com/nyt-connections-hints-answers-today...

    If you've been having trouble with any of the connections or words in Friday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down ...

  9. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.