When.com Web Search

  1. Ads

    related to: all proofs in geometry

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Berger–Kazdan comparison theorem (Riemannian geometry) Bernstein's theorem (approximation theory) Bernstein's theorem (functional analysis) Berry–Esséen theorem (probability theory) Bertini's theorem (algebraic geometry) Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics)

  5. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    Early attempts to find all the errors include Hilbert's geometry axioms and Tarski's. In 2017, Michael Beeson et al. used computer proof assistants to create a new set of axioms similar to Euclid's and generate proofs that were valid with those axioms. [34]

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  7. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.