Ads
related to: different proofs in geometry
Search results
Results From The WOW.Com Content Network
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the
Italian school of algebraic geometry. Most gaps in proofs are caused either by a subtle technical oversight, or before the 20th century by a lack of precise definitions. A major exception to this is the Italian school of algebraic geometry in the first half of the 20th century, where lower standards of rigor gradually became acceptable.
Berger–Kazdan comparison theorem (Riemannian geometry) Bernstein's theorem (approximation theory) Bernstein's theorem (functional analysis) Berry–Esséen theorem (probability theory) Bertini's theorem (algebraic geometry) Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics)
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, ... at least 28 different proofs had been published, but all were found ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive. Eventually, it was discovered that inverting the postulate gave valid, albeit different geometries.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.