Search results
Results From The WOW.Com Content Network
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems.
In control engineering, a discrete-event dynamic system (DEDS) is a discrete-state, event-driven system of which the state evolution depends entirely on the occurrence of asynchronous discrete events over time.
Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions . Chaotic maps often occur in the study of dynamical systems .
The Duffing map (also called as 'Holmes map') is a discrete-time dynamical system. It is an example of a dynamical system that exhibits chaotic behavior. The Duffing map takes a point (x n, y n) in the plane and maps it to a new point given by + = + = +.
In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence. Because of their explicit, discrete nature, such systems are often relatively easy to characterize and understand.
The concept of fixed points is of primary importance in discrete dynamical systems. Another graphical technique that can be used for one-variable mappings is the spider web projection. After determining an initial value x 0 {\displaystyle x_{0}} on the horizontal axis, draw a vertical line from the initial value x 0 {\displaystyle x_{0}} to the ...
In mathematics, the Hénon map, sometimes called Hénon–Pomeau attractor/map, [1] is a discrete-time dynamical system. It is one of the most studied examples of dynamical systems that exhibit chaotic behavior. The Hénon map takes a point (x n, y n) in the plane and maps it to a new point