Search results
Results From The WOW.Com Content Network
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule , the notation is often sufficient and commonly used for spectroscopy .
In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: C n (for cyclic) indicates that the group has an n-fold rotation axis. C nh is C n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation.
Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups. In Schoenflies notation, the reflective point groups in 3D are C nv, D nh, and the full polyhedral groups T, O, and I.
In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups.
John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion. [3]
The symbol of point group 3 2 / m may be confusing; the corresponding Schoenflies symbol is D 3d, which means that the group consists of 3-fold axis, three perpendicular 2-fold axes, and 3 vertical diagonal planes passing between these 2-fold axes, so it seems that the group can be denoted as 32m or 3m2.
Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...
All of the group operations described above and the symbols for crystallographic point groups themselves were first published by Arthur Schoenflies in 1891 but the groups had been applied by other researchers to the external morphology of crystals much earlier in the 19th century.