When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scalar (physics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(physics)

    A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...

  3. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per unit electric current ohm (Ω = V/A) L 2 M T −3 I −2: extensive, scalar, assumes linearity Electrical resistivity: ρ e

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  5. Vector quantity - Wikipedia

    en.wikipedia.org/wiki/Vector_quantity

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [ 1 ] [ 2 ] It is typically formulated as the product of a unit of measurement and a vector numerical value ( unitless ), often a Euclidean vector with magnitude and direction .

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector spaces and complex ...

  8. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.

  9. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    For vector flux, the surface integral of j over a surface S, gives the proper flowing per unit of time through the surface: = ^ =, where A (and its infinitesimal) is the vector area – combination = ^ of the magnitude of the area A through which the property passes and a unit vector ^ normal to the area. Unlike in the second set of equations ...