When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  3. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 ⁠ 1 / 2 ⁠ × 2 ⁠ 1 / 2 ⁠ = 11 ⁠ 1 / 4Multiplication (often denoted by the cross symbol × , by the mid-line dot operator ⋅ , by juxtaposition, or, on computers, by an asterisk * ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition ...

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    [1] [2] [3] It is a divide-and-conquer algorithm that reduces the multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating this reduction, to at most ⁡ single-digit multiplications.

  5. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...

  6. Multiply perfect number - Wikipedia

    en.wikipedia.org/wiki/Multiply_perfect_number

    A number that is k-perfect for a certain k is called a multiply perfect number. As of 2014, k-perfect numbers are known for each value of k up to 11. [1] It is unknown whether there are any odd multiply perfect numbers other than 1. The first few multiply perfect numbers are:

  7. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. To find the position of the decimal point in the final answer, one can draw a vertical line from the decimal point in 5.8, and a horizontal line from the decimal point in 2.13. (See picture for Step 4.)

  8. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    In binary encoding each long number is multiplied by one digit (either 0 or 1), and that is much easier than in decimal, as the product by 0 or 1 is just 0 or the same number. Therefore, the multiplication of two binary numbers comes down to calculating partial products (which are 0 or the first number), shifting them left, and then adding them ...

  9. Multiplication and repeated addition - Wikipedia

    en.wikipedia.org/wiki/Multiplication_and...

    Multiplication is often defined for natural numbers, then extended to whole numbers, fractions, and irrational numbers. However, abstract algebra has a more general definition of multiplication as a binary operation on some objects that may or may not be numbers. Notably, one can multiply complex numbers, vectors, matrices, and quaternions.