When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In the language of tropical analysis, the softmax is a deformation or "quantization" of arg max and arg min, corresponding to using the log semiring instead of the max-plus semiring (respectively min-plus semiring), and recovering the arg max or arg min by taking the limit is called "tropicalization" or "dequantization".

  3. Clamp (function) - Wikipedia

    en.wikipedia.org/wiki/Clamp_(function)

    The NumPy library offers the clip [3] function. In the Wolfram Language, it is implemented as Clip [x, {minimum, maximum}]. [4] In OpenGL, the glClearColor function takes four GLfloat values which are then 'clamped' to the range [,]. [5]

  4. LogSumExp - Wikipedia

    en.wikipedia.org/wiki/LogSumExp

    The LogSumExp (LSE) (also called RealSoftMax [1] or multivariable softplus) function is a smooth maximum – a smooth approximation to the maximum function, mainly used by machine learning algorithms. [2] It is defined as the logarithm of the sum of the exponentials of the arguments:

  5. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  6. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  7. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut. The optimization variant is known to be NP-Hard. The opposite problem, that of finding a minimum cut is known to be efficiently solvable via the Ford–Fulkerson algorithm.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Smooth maximum - Wikipedia

    en.wikipedia.org/wiki/Smooth_maximum

    In mathematics, a smooth maximum of an indexed family x 1, ..., x n of numbers is a smooth approximation to the maximum function (, …,), meaning a parametric family of functions (, …,) such that for every α, the function ⁠ ⁠ is smooth, and the family converges to the maximum function ⁠ ⁠ as ⁠ ⁠.