Ad
related to: high temp resistant conductive sleeve surgery video
Search results
Results From The WOW.Com Content Network
PTFE (fluoropolymer) tubes have a wide operating temperature range (-55 to 175 °C), a low coefficient of friction, and high resistance to chemicals and punctures. [7] Viton, another fluoropolymer with high chemical resistance, is widely used in hydraulic equipment. It is highly flexible, with a very wide operating temperature range of -55 to ...
Electrosurgery is the application of a high-frequency (radio frequency) alternating polarity, electrical current to biological tissue as a means to cut, coagulate, desiccate, or fulgurate tissue.
Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. [1] They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking.
This improves the molecular structure such that the polyolefin will work as part of a heat-shrinkable sleeve and provide the required level of mechanical protection while in-service. It makes the polyolefin perform more like a tough, heat-resistant, elastic material or rubber, [3] rather than like a plastic material.
No release agent is required, obviating post-production cleanup. Silicones also exhibit good chemical resistance and high-temperature resistance (205 °C, 400 °F and higher). For this reason, silicone molds are suitable for casting low-melt metals and alloys (e.g. zinc, tin, pewter, and Wood's metal).
The European Commission funded a research project, C 3 HARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016-2020 for the design, manufacturing and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments.
Electrosurgery and surgical diathermy involve the use of high-frequency A.C. electric current in surgery as either a cutting modality, or else to cauterize small blood vessels to stop bleeding. This technique induces localized tissue burning and damage, the zone of which is controlled by the frequency and power of the device.
The construction and operating temperature will typically be chosen to maximise: Critical temperature T c, the temperature below which the wire becomes a superconductor; Critical current density J c, the maximum current a superconducting wire can carry per unit cross-sectional area (see images below for examples with 20 kA/cm 2).