Search results
Results From The WOW.Com Content Network
The recognition-by-components theory suggests that there are fewer than 36 geons which are combined to create the objects we see in day-to-day life. [3] For example, when looking at a mug we break it down into two components – "cylinder" and "handle". This also works for more complex objects, which in turn are made up of a larger number of geons.
For example, a circle swept along a straight axis would define a cylinder (see Figure). A rectangle swept along a straight axis would define a "brick" (see Figure). Four dimensions with contrastive values (i.e., mutually exclusive values) define the current set of geons (see Figure): Shape of cross section: round vs. straight.
A cylinder (from Ancient Greek κύλινδρος (kúlindros) 'roller, tumbler') [1] has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry , it is considered a prism with a circle as its base.
A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).
There also exist three-dimensional solid shapes each of which, when viewed from a certain angle, appears the same as the 2-dimensional depiction of the Penrose triangle on this page (such as – for example – the adjacent image depicting a sculpture in Perth, Australia). The term "Penrose Triangle" can refer to the 2-dimensional depiction or ...
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Geometric objects with a well-defined axis include circles (any line through the center), spheres, cylinders, [2] conic sections, and surfaces of revolution. Concentric objects are often part of the broad category of whorled patterns, which also includes spirals (a curve which emanates from a point, moving farther away as it revolves around the ...