When.com Web Search

  1. Ad

    related to: proof of irrational numbers

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Dov Jarden gave a simple non-constructive proof that there exist two irrational numbers a and b, such that a b is rational: [28] [29] Consider √ 2 √ 2; if this is rational, then take a = b = √ 2. Otherwise, take a to be the irrational number √ 2 √ 2 and b = √ 2. Then a b = (√ 2 √ 2) √ 2 = √ 2 √ 2 · √ 2 = √ 2 2 = 2 ...

  3. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [ 3 ] [ 4 ] As in many proofs of irrationality, it is a proof by contradiction .

  4. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    Apéry's original proof [3] [4] was based on the well-known irrationality criterion from Peter Gustav Lejeune Dirichlet, which states that a number is irrational if there are infinitely many coprime integers p and q such that

  5. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  6. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    It was probably the first number known to be irrational. [1] The fraction ⁠ 99 / 70 ⁠ (≈ 1.4142 857) is sometimes used as a good rational approximation with a reasonably small denominator . Sequence A002193 in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here ...

  7. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This shows that any irrational number has irrationality measure at least 2. The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  8. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    The Pythagoreans are credited with the proof of the existence of irrational numbers. [1] [2] When the ratio of the lengths of two line segments is irrational, the line segments themselves (not just their lengths) are also described as being incommensurable.

  9. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...