Search results
Results From The WOW.Com Content Network
Mathematically Correct's main point of contention was that, in reform textbooks, traditional methods and concepts have been omitted or replaced by new terminology and procedures. As a result, in the case of the high-school program Core-Plus Mathematics Project , for example, some reports suggest that students may be unprepared for college level ...
In philosophy and mathematics, Newcomb's paradox, also known as Newcomb's problem, is a thought experiment involving a game between two players, one of whom is able to predict the future. Newcomb's paradox was created by William Newcomb of the University of California 's Lawrence Livermore Laboratory .
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
As in the Monty Hall problem, the intuitive answer is 1 / 2 , but the probability is actually 2 / 3 . The Three Prisoners problem, published in Martin Gardner's Mathematical Games column in Scientific American in 1959 [7] [55] is equivalent to the Monty Hall problem. This problem involves three condemned prisoners, a random one of ...
In computational complexity theory, the set splitting problem is the following decision problem: given a family F of subsets of a finite set S, decide whether there exists a partition of S into two subsets S 1, S 2 such that all elements of F are split by this partition, i.e., none of the elements of F is completely in S 1 or S 2.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.