When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    The SI unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1). Thus, the unit of electric flux expressed in terms of SI base units is kg·m 3 ·s −3 ·A −1. Its dimensional formula is L 3 M T −3 I −1.

  4. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time if that region is a spacelike surface cross a timelike interval.

  8. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric ...

  9. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Using Ampère's law in the region from R 1 to R 2, which encloses the current +I in the center conductor but with no contribution from the current in the outer conductor, we find at radius r: = = () = Now, from an electric field in the radial direction, and a tangential magnetic field, the Poynting vector, given by the cross-product of these ...