Search results
Results From The WOW.Com Content Network
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
A double exponential function (red curve) compared to a single exponential function (blue curve). A double exponential function is a constant raised to the power of an exponential function . The general formula is f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} (where a >1 and b >1), which grows much more quickly than an ...
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
This complex exponential function is sometimes denoted cis x ("cosine plus i sine"). The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering.
The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more commonly expressed as "the nth power of b", "b to the nth power" or "b to the power n". For example, the fourth power of 10 is 10,000 because 10 4 = 10 × 10 × 10 × 10 = 10,000.
Every power of 2 (excluding 1) can be written as the sum of four square numbers in 24 ways. The powers of 2 are the natural numbers greater than 1 that can be written as the sum of four square numbers in the fewest ways. As a real polynomial, a n + b n is irreducible, if and only if n is a power of two.
Let X and Y be n×n complex matrices and let a and b be arbitrary complex numbers. We denote the n×n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I