Search results
Results From The WOW.Com Content Network
Marvin Minsky et al. raised the issue that AI can function as a form of surveillance, with the biases inherent in surveillance, suggesting HI (Humanistic Intelligence) as a way to create a more fair and balanced "human-in-the-loop" AI. [62] Explainable AI has been recently a new topic researched amongst the context of modern deep learning.
The QLattice is a software library which provides a framework for symbolic regression in Python.It works on Linux, Windows, and macOS.The QLattice algorithm is developed by the Danish/Spanish AI research company Abzu. [1]
TensorFlow is a software library for machine learning and artificial intelligence. It can be used across a range of tasks, but is used mainly for training and inference of neural networks . [ 3 ] [ 4 ] It is one of the most popular deep learning frameworks, alongside others such as PyTorch and PaddlePaddle.
Open-source artificial intelligence is an AI system that is freely available to use, study, modify, and share. [1] These attributes extend to each of the system's components, including datasets, code, and model parameters, promoting a collaborative and transparent approach to AI development. [ 1 ]
Alibi is an open-source Python library for machine learning model explainability, in 2020, Alibi earned Seldon a CogX Best Innovation in Explainable AI award. [11] Seldon Deploy, a closed-source software suite to deploy, manage, monitor and explain the outcomes of machine learning models. [2]
The field of Explainable AI seeks to provide better explanations from existing algorithms, and algorithms that are more easily explainable, but it is a young and active field. [ 18 ] [ 19 ] Others argue that the difficulties with explainability are due to its overly narrow focus on technical solutions rather than connecting the issue to the ...
Approaches for integration are diverse. [10] Henry Kautz's taxonomy of neuro-symbolic architectures [11] follows, along with some examples: . Symbolic Neural symbolic is the current approach of many neural models in natural language processing, where words or subword tokens are the ultimate input and output of large language models.
A Tsetlin machine is a form of learning automaton collective for learning patterns using propositional logic. Ole-Christoffer Granmo created [1] and gave the method its name after Michael Lvovitch Tsetlin, who invented the Tsetlin automaton [2] and worked on Tsetlin automata collectives and games. [3]