Search results
Results From The WOW.Com Content Network
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression a x + b y + c z {\displaystyle ax+by+cz} in the definition of a plane is a dot product ( a , b , c ) ⋅ ( x , y , z ) {\displaystyle (a,b,c)\cdot (x,y,z)} , and the expression a 2 + b 2 + c 2 {\displaystyle a^{2 ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The radial distance ρ is the Euclidean distance from the z-axis to the point P. The azimuth φ is the angle between the reference direction on the chosen plane and the line from the origin to the projection of P on the plane. The axial coordinate or height z is the signed distance from the chosen plane to the point P.
Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P(x, y, z, w), then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.