When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    List of datasets in computer vision and image processing. Outline of machine learning. v. t. e. These datasets are used in machine learning (ML) research and have been cited in peer-reviewed academic journals. Datasets are an integral part of the field of machine learning. Major advances in this field can result from advances in learning ...

  3. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it.

  4. k-medians clustering - Wikipedia

    en.wikipedia.org/wiki/K-medians_clustering

    The median is computed in each single dimension in the Manhattan-distance formulation of the k-medians problem, so the individual attributes will come from the dataset (or be an average of two values from the dataset). This makes the algorithm more reliable for discrete or even binary data sets.

  5. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    Low bias, high variance. The bias–variance tradeoff is a central problem in supervised learning. Ideally, one wants to choose a model that both accurately captures the regularities in its training data, but also generalizes well to unseen data. Unfortunately, it is typically impossible to do both simultaneously.

  6. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning. Oversampling and undersampling are ...

  7. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance.

  8. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  9. Median trick - Wikipedia

    en.wikipedia.org/wiki/Median_trick

    The median trick is a generic approach that increases the chances of a probabilistic algorithm to succeed. [1] Apparently first used in 1986 [ 2 ] by Jerrum et al. [ 3 ] for approximate counting algorithms , the technique was later applied to a broad selection of classification and regression problems.