Search results
Results From The WOW.Com Content Network
Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E⋅F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler ...
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...
In mathematics, a polynomial is a ... called factorization is, in general, ... A matrix polynomial equation is an equality between two matrix polynomials, ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law.The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra.
If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive. If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose Q † = Q − 1 {\displaystyle Q^{\dagger }=Q^{-1}} ).
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,