Search results
Results From The WOW.Com Content Network
For a fully oriented molecule, the dipolar coupling for an 1 H-15 N amide group would be over 20 kHz, and a pair of protons separated by 5 Å would have up to ~1 kHz coupling. However the degree of alignment achieved by applying magnetic field is so low that the largest 1 H-15 N or 1 H-13 C dipolar couplings are <5 Hz. [19]
The mechanisms of nuclear-spin energy-coupling have been extensively characterized and are described in the following articles: Angular momentum coupling, Magnetic dipole–dipole interaction, J-coupling, Residual dipolar coupling, Nuclear Overhauser effect, Spin–spin relaxation, and Spin saturation transfer. Alternatively, some nuclei in a ...
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
The goal of applying the Bobath concept is to promote motor learning for efficient motor control in various environments, thereby improving participation and function. This is done through specific patient handling skills to guide patients through the initiation and completing of intended tasks. [3]
A forward model is a model used by the nervous system to predict the new state of the motor apparatus and the sensory stimuli that result from a motion. The forward model takes the efference copy as an input and outputs the expected sensory changes. [ 4 ]
A woman exercising. In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking.This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement.
Psychomotor learning is the relationship between cognitive functions and physical movement.Psychomotor learning is demonstrated by physical skills such as movement, coordination, manipulation, dexterity, grace, strength, speed—actions which demonstrate the fine or gross motor skills, such as use of precision instruments or tools, and walking.
During motor learning, the forward and inverse models are paired and tightly coupled by a responsibility signal within modules. Using the forward model's predictions and sensory contextual cues, responsibility signals indicate the degree to which each pair should be responsible for controlling current behavior.