Search results
Results From The WOW.Com Content Network
Fluorine's chemistry is dominated by its strong tendency to gain an electron. It is the most electronegative element and elemental fluorine is a strong oxidant. The removal of an electron from a fluorine atom requires so much energy that no known reagents are known to oxidize fluorine to any positive oxidation state. [20]
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen [note 1] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases. It is highly toxic.
Fluorine is the thirteenth most abundant element on Earth and the 24th most abundant element in the universe. It is the most electronegative element and it is highly reactive. Thus, it is rarely found in its elemental state, although elemental fluorine has been identified in certain geochemical contexts. [3]
Pauling estimated that an electronegativity difference of 1.7 (on the Pauling scale) corresponds to 50% ionic character, so that a difference greater than 1.7 corresponds to a bond which is predominantly ionic. [10] Ionic character in covalent bonds can be directly measured for atoms having quadrupolar nuclei (2 H, 14 N, 81,79 Br, 35,37 Cl or ...
Fluorine is an insulator in all of its forms. It has a high ionisation energy (1681 kJ/mol), high electron affinity (328 kJ/mol), and high electronegativity (3.98). Fluorine is a powerful oxidising agent (F 2 + 2e → 2HF = 2.87 V at pH 0); "even water, in the form of steam, will catch fire in an atmosphere of fluorine". [9]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
$220 at Amazon. See at Le Creuset. 2024 F&W Best New Chef Leina Horii of Kisser in Nashville thinks that a large, seasoned cast iron skillet makes for a fantastic (albeit, heavy) holiday gift ...
Fluorine is highly electronegative, resulting in this significant decrease in bond angle. In predicting the bond angle of water, Bent's rule suggests that hybrid orbitals with more s character should be directed towards the lone pairs, while that leaves orbitals with more p character directed towards the hydrogens, resulting in deviation from ...