Ad
related to: menger's edge connectivity center 1 6 8
Search results
Results From The WOW.Com Content Network
The edge-connectivity version of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y (the minimum number of edges whose removal disconnects x and y) is equal to the maximum number of pairwise edge-disjoint paths from x to y.
The edge connectivity of is the maximum value k such that G is k-edge-connected. The smallest set X whose removal disconnects G is a minimum cut in G . The edge connectivity version of Menger's theorem provides an alternative and equivalent characterization, in terms of edge-disjoint paths in the graph.
The vertex-connectivity of an input graph G can be computed in polynomial time in the following way [4] consider all possible pairs (,) of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for (,) is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the ...
The connectivity and edge-connectivity of G can then be computed as the minimum values of κ(u, v) and λ(u, v), respectively. In computational complexity theory , SL is the class of problems log-space reducible to the problem of determining whether two vertices in a graph are connected, which was proved to be equal to L by Omer Reingold in ...
In the undirected edge-disjoint paths problem, we are given an undirected graph G = (V, E) and two vertices s and t, and we have to find the maximum number of edge-disjoint s-t paths in G. Menger's theorem states that the maximum number of edge-disjoint s-t paths in an undirected graph is equal to the minimum number of edges in an s-t cut-set.
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS).A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual.
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
Such connected relations only describe either full connection or no connection. lambda-connectedness is introduced to measure incomplete or fuzzy relations between two vertices, points, human beings, etc. In fact, partial relations have been studied in other aspects. Random graph theory allows one to assign a probability to each edge of a graph ...