Search results
Results From The WOW.Com Content Network
The high performance of the BERT model could also be attributed [citation needed] to the fact that it is bidirectionally trained. This means that BERT, based on the Transformer model architecture, applies its self-attention mechanism to learn information from a text from the left and right side during training, and consequently gains a deep ...
The transformer model has been implemented in standard deep learning frameworks such as TensorFlow and PyTorch. Transformers is a library produced by Hugging Face that supplies transformer-based architectures and pretrained models.
Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, [2] the logistic function used in the 2012 speech recognition model developed by Hinton et al, [3] the ReLU used in the 2012 AlexNet computer vision model [4] [5] and in the 2015 ResNet model.
PyTorch is a machine learning library based on the Torch library, [4] [5] [6] used for applications such as computer vision and natural language processing, ...
In natural language processing, a sentence embedding is a representation of a sentence as a vector of numbers which encodes meaningful semantic information. [1] [2 ...
Vision Transformer architecture, showing the encoder-only Transformer blocks inside. The basic architecture, used by the original 2020 paper, [1] is as follows. In summary, it is a BERT-like encoder-only Transformer.
The core package of Torch is torch.It provides a flexible N-dimensional array or Tensor, which supports basic routines for indexing, slicing, transposing, type-casting, resizing, sharing storage and cloning.
The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector.