Ad
related to: robertson seymour theorem practice sheetstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the Robertson–Seymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.
Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]
Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the Robertson–Seymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...
The Robertson–Seymour theorem implies that every matroid property of graphic matroids characterized by a list of forbidden minors can be characterized by a finite list. Another way of saying the same thing is that the partial order on graphic matroids formed by the minor operation is a well-quasi-ordering .
As the Robertson–Seymour theorem shows, many important families of graphs can be characterized by a finite set of forbidden minors: for instance, according to Wagner's theorem, the planar graphs are exactly the graphs that have neither the complete graph K 5 nor the complete bipartite graph K 3,3 as minors.
Paul D. Seymour FRS (born 26 July 1950) is a British mathematician known for his work in discrete mathematics, especially graph theory.He (with others) was responsible for important progress on regular matroids and totally unimodular matrices, the four colour theorem, linkless embeddings, graph minors and structure, the perfect graph conjecture, the Hadwiger conjecture, claw-free graphs, χ ...
The proof by Robertson, Seymour & Thomas (1993c) of the case k = 6 of Hadwiger's conjecture is sufficient to settle Sachs' question: the linkless graphs can be colored with at most five colors, as any 6-chromatic graph contains a K 6 minor and is not linkless, and there exist linkless graphs such as K 5 that require five
The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.