Search results
Results From The WOW.Com Content Network
In continuous systems such as electromagnetic fields, fluid dynamics and deformable bodies, a momentum density can be defined as momentum per volume (a volume-specific quantity). A continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable ...
Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse, i.e. change in momentum, per mass of propellant. This is equivalent to "thrust per massflow".
This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time. This sort of change is a step change , and is not physically possible. However, this is a useful model for computing the effects of ideal collisions (such as in videogame physics engines ).
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.
This equation is equivalent to the following 3D conservation laws + + = + + = + = respectively describing the electromagnetic energy density = (+) and electromagnetic momentum density =, where is the electric current density, the electric charge density, and is the Lorentz force density.
A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...
The equation above presupposes that the gas density is low (i.e. the pressure is low). This implies that the transport of momentum through the gas due to the translational motion of molecules is much larger than the transport due to momentum being transferred between molecules during collisions.
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = Δ F / Δ t Δ x / area , which is the speed of light, c = Δ x / Δ t ...