When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Quantum hydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_hydrodynamics

    The quantum hydrodynamic equation is an equation in Bohmian mechanics, which, it turns out, has a mathematical relationship to classical fluid dynamics (see Madelung equations). Some common experimental applications of these studies are in liquid helium ( 3 He and 4 He ), and of the interior of neutron stars and the quark–gluon plasma .

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)

  5. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    These are the principal quantum number, the orbital angular momentum quantum number, and the magnetic quantum number. Together with one spin-projection quantum number of the electron, this is a complete set of observables. The figure can serve to illustrate some further properties of the function spaces of wave functions.

  6. Probability current - Wikipedia

    en.wikipedia.org/wiki/Probability_current

    In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability.Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid.

  7. Quantum turbulence - Wikipedia

    en.wikipedia.org/wiki/Quantum_turbulence

    Quantum turbulence [1] [2] is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids. The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman .

  8. Madelung equations - Wikipedia

    en.wikipedia.org/wiki/Madelung_equations

    In theoretical physics, the Madelung equations, or the equations of quantum hydrodynamics, are Erwin Madelung's alternative formulation of the Schrödinger equation for a spinless non relativistic particle, written in terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics. [1]

  9. Hydrodynamic quantum analogs - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_quantum_analogs

    Quantum tunneling is the quantum mechanical phenomenon where a quantum particle passes through a potential barrier. In classical mechanics, a classical particle could not pass through a potential barrier if the particle does not have enough energy, so the tunneling effect is confined to the quantum realm.