Ad
related to: k spectral line formula physics equation calculator
Search results
Results From The WOW.Com Content Network
In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.
Similarly to Lyman-alpha, the K-alpha emission is composed of two spectral lines, K-alpha 1 (Kα 1) and K-alpha 2 (Kα 2). [6] The K-alpha 1 emission is slightly higher in energy (and, thus, has a lower wavelength) than the K-alpha 2 emission. For all elements, the ratio of the intensities of K-alpha 1 and K-alpha 2 is very close to 2:1. [7]
The higher the temperature of the gas, the wider the distribution of velocities in the gas. Since the spectral line is a combination of all of the emitted radiation, the higher the temperature of the gas, the broader the spectral line emitted from that gas. This broadening effect is described by a Gaussian profile and there is no associated shift.
According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = where k B is the Boltzmann ...
The Forouhi–Bloomer dispersion equations for n and k were originally expected to apply to semiconductors and dielectrics, whether in amorphous, polycrystalline, or crystalline states. However, they have been shown to describe the n and k spectra of transparent conductors, [5] as well as metallic compounds.
Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum.
The equivalent width of a spectral line is a measure of the area of the line on a plot of intensity versus wavelength in relation to underlying continuum level. It is found by forming a rectangle with a height equal to that of continuum emission, and finding the width such that the area of the rectangle is equal to the area in the spectral line.
The hydrogen spectral series can be expressed simply in terms of the Rydberg constant for hydrogen and the Rydberg formula. In atomic physics, Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.