Ad
related to: 1d cssf spectroscopy
Search results
Results From The WOW.Com Content Network
A wide range of NMR spectra can be acquired including 1D, 1D with decoupling, solvent suppression, DEPT, T1, T2 and 2D HETCOR, HMBC, HMQC, COSY and JRES spectra. Pulsed field gradients for spectroscopy are included, and optional Diffusion pulsed field gradients [22] can also be added.
Recent advances in this technique include the 1D-CSSF (chemical shift selective filter) TOCSY experiment, which produces higher quality spectra and allows coupling constants to be reliably extracted and used to help determine stereochemistry. TOCSY is sometimes called "homonuclear Hartmann–Hahn spectroscopy" (HOHAHA). [12]
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
Highly anisotropic solids like graphite (quasi-2D) and Bechgaard salts (quasi-1D) show anomalies in spectroscopic measurements that are attributable to the Van Hove singularities. Van Hove singularities play a significant role in understanding optical intensities in single-walled carbon nanotubes (SWNTs) which are also quasi-1D systems.
Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1 H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. [1]
Absorption spectrum of an aqueous solution of potassium permanganate.The spectrum consists of a series of overlapping lines belonging to a vibronic progression. Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum.
Spectroscopists customarily refer to the spectrum arising from a given ionization state of a given element by the element's symbol followed by a Roman numeral.The numeral I is used for spectral lines associated with the neutral element, II for those from the first ionization state, III for those from the second ionization state, and so on. [1]
The heteronuclear single quantum coherence or heteronuclear single quantum correlation experiment, normally abbreviated as HSQC, is used frequently in NMR spectroscopy of organic molecules and is of particular significance in the field of protein NMR. The experiment was first described by Geoffrey Bodenhausen and D. J. Ruben in 1980. [1]