Search results
Results From The WOW.Com Content Network
Rosetta homology modeling and ab initio fragment assembly with Ginzu domain prediction: Webserver Rosetta@home: Distributed-computing implementation of Rosetta algorithm: Downloadable program Abalone: Molecular Dynamics folding: Program C-QUARK C-QUARK is a method for ab initio protein structure prediction. Based on deep-learning based contact ...
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
The Phyre and Phyre2 servers predict the three-dimensional structure of a protein sequence using the principles and techniques of homology modeling.Because the structure of a protein is more conserved in evolution than its amino acid sequence, a protein sequence of interest (the target) can be modeled with reasonable accuracy on a very distantly related sequence of known structure (the ...
A step called domain parsing, or domain boundary prediction, is usually done first to split a protein into potential structural domains. As with the rest of tertiary structure prediction, this can be done comparatively from known structures [ 32 ] or ab initio with the sequence only (usually by machine learning , assisted by covariation). [ 33 ]
To predict the function, structure, or other properties of a protein for which only its sequence of amino acids is known, the protein sequence is compared to the sequences of other proteins in public databases. If a protein with sufficiently similar sequence is found, the two proteins are likely to be evolutionarily related ("homologous"). In ...
Describes protein families and domain architectures in complete genomes. Protein families are formed using a Markov clustering algorithm, followed by multi-linkage clustering according to sequence identity. Mapping of predicted structure and sequence domains is undertaken using hidden Markov models libraries representing CATH and Pfam domains ...
Superfamily (probable common evolutionary origin): Proteins that have low sequence identities, but whose structural and functional features suggest that a common evolutionary origin is probable, are placed together in superfamilies. For example, actin, the ATPase domain of the heat shock protein, and hexokinase together form a superfamily.
Computational methods exploit the sequence signatures of disorder to predict whether a protein is disordered, given its amino acid sequence.The table below, which was originally adapted from [1] and has been recently updated, shows the main features of software for disorder prediction.