Search results
Results From The WOW.Com Content Network
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.
In mathematics, Abel's identity (also called Abel's formula [1] or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation.
If such a linear dependence exists with at least a nonzero component, then the n vectors are linearly dependent. Linear dependencies among v 1, ..., v n form a vector space. If the vectors are expressed by their coordinates, then the linear dependencies are the solutions of a homogeneous system of linear equations, with the coordinates of the ...
I removed the condition that "the functions are solutions of some homogenous linear differential equation" from the statement "If the Wronskian is non-zero at some point in an interval, then the functions are linearly independent in that interval." If the Wronskian is nonzero at some point x, then the vectors
If it can be shown that the Wronskian is zero everywhere on an interval then, in the case of analytic functions, this implies the given functions are linearly dependent. See the Wronskian and linear independence. Another such use of the determinant is the resultant, which gives a criterion when two polynomials have a common root. [39]
The Jost function can be used to construct Green's functions for [+ ()] = (′).In fact, + (;, ′) = (, ′) + (, ′) (), where ′ (, ′) and ′ (, ′).. The analyticity of the Jost function in the particle momentum allows to establish a relationship between the scatterung phase difference with infinite and zero momenta on one hand and the number of bound states , the number of Jaffe ...
Of course, this is highly dependent on the condition. Sometimes, the better option might be surgery, corrective wear, or nothing at all. Even the same condition, depending on severity and other ...
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.