When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  3. Orders of magnitude (data) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(data)

    The byte has been a commonly used unit of measure for much of the information age to refer to a number of bits.In the early days of computing, it was used for differing numbers of bits based on convention and computer hardware design, but today means 8 bits.

  4. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    In computer science, canonicalization (sometimes standardization or normalization) is a process for converting data that has more than one possible representation into a "standard", "normal", or canonical form.

  5. Normalisation by evaluation - Wikipedia

    en.wikipedia.org/wiki/Normalisation_by_evaluation

    And if the datatype of normal forms is typed, the type of reify (and therefore of nbe) then makes it clear that normalization is type preserving. [ 9 ] Normalization by evaluation also scales to the simply typed lambda calculus with sums ( + ), [ 7 ] using the delimited control operators shift and reset .

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  7. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Query-Key normalization (QKNorm) [32] normalizes query and key vectors to have unit L2 norm. In nGPT , many vectors are normalized to have unit L2 norm: [ 33 ] hidden state vectors, input and output embedding vectors, weight matrix columns, and query and key vectors.

  8. Gigabyte - Wikipedia

    en.wikipedia.org/wiki/Gigabyte

    The difference between units based on decimal and binary prefixes increases as a semi-logarithmic (linear-log) function—for example, the decimal kilobyte value is nearly 98% of the kibibyte, a megabyte is under 96% of a mebibyte, and a gigabyte is just over 93% of a gibibyte value. This means that a 300 GB (279 GiB) hard disk might be ...

  9. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.