When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    The covariant derivative is a generalization of the directional derivative from vector calculus.As with the directional derivative, the covariant derivative is a rule, , which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field v defined in a neighborhood of P. [7]

  3. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The components v i [f] are the contravariant components of the vector v in the basis f, and the components v i [f] are the covariant components of v in the basis f. The terminology is justified because under a change of basis,

  4. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system , =,, … (such a collection is called a manifold).

  5. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    "Any physical law which can be expressed in tensor notation in SR has exactly the same form in a locally inertial frame of a curved spacetime." The 4-gradient commas (,) in SR are simply changed to covariant derivative semi-colons (;) in GR, with the connection between the two using Christoffel symbols. This is known in relativity physics as ...

  6. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection (like any affine connection) also defines a derivative along curves, sometimes denoted by D. Given a smooth curve γ on (M, g) and a vector field V along γ its derivative is defined by = ˙ (). Formally, D is the pullback connection γ*∇ on the pullback bundle γ*TM.

  7. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The covariant derivative of a vector field with components is given by: ; = ) = + and similarly the ...

  8. Second covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Second_covariant_derivative

    In the math branches of differential geometry and vector calculus, the second covariant derivative, or the second order covariant derivative, of a vector field is the derivative of its derivative with respect to another two tangent vector fields.

  9. Ehresmann connection - Wikipedia

    en.wikipedia.org/wiki/Ehresmann_connection

    A covariant derivative in differential geometry is a linear differential operator which takes the directional derivative of a section of a vector bundle in a covariant manner. It also allows one to formulate a notion of a parallel section of a bundle in the direction of a vector: a section s is parallel along a vector X {\displaystyle X} if ∇ ...