Search results
Results From The WOW.Com Content Network
A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero ...
Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is the interior of the set of all non-negative matrices. While such matrices are commonly found, the term "positive matrix" is only occasionally used due to the possible confusion with positive-definite matrices, which are different.
A matrix effect value of less than 100 indicates suppression, while a value larger than 100 is a sign of matrix enhancement. An alternative definition of matrix effect utilizes the formula: M E = 100 ( A ( e x t r a c t ) A ( s t a n d a r d ) ) − 100 {\displaystyle ME=100\left({\frac {A(extract)}{A(standard)}}\right)-100}
In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...
The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...
Positive maps are monotone, i.e. () for all self-adjoint elements ,. Since ‖ ‖ ‖ ‖ for all self-adjoint elements , every positive map is automatically continuous with respect to the C*-norms and its operator norm equals ‖ ‖.