When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, for = + + the curl is the vector field: ⁡ = = (, , ) (, , ) = | | = + + where i, j, and k are the unit vectors for the x-, y-, and z-axes, respectively. As the name implies the curl is a measure of how much nearby vectors tend in a circular direction.

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    The curl is an operation which takes a vector field and produces another vector field. The curl is defined only in three dimensions, but some properties of the curl can be captured in higher dimensions with the exterior derivative .

  5. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

  6. Pseudovector - Wikipedia

    en.wikipedia.org/wiki/Pseudovector

    In physics, pseudovectors are generally the result of taking the cross product of two polar vectors or the curl of a polar vector field. The cross product and curl are defined, by convention, according to the right hand rule, but could have been just as easily defined in terms of a left-hand rule.

  7. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    In any dimension, assuming a nondegenerate form, grad of a scalar function is a vector field, and div of a vector field is a scalar function, but only in dimension 3 or 7 [4] (and, trivially, in dimension 0 or 1) is the curl of a vector field a vector field, and only in 3 or 7 dimensions can a cross product be defined (generalizations in other ...

  8. Helmholtz decomposition - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_decomposition

    In other words, a vector field can be constructed with both a specified divergence and a specified curl, and if it also vanishes at infinity, it is uniquely specified by its divergence and curl. This theorem is of great importance in electrostatics , since Maxwell's equations for the electric and magnetic fields in the static case are of ...

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The divergence of the curl of any vector field (in three dimensions) is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.} If a vector field F with zero divergence is defined on a ball in R 3 , then there exists some vector field G on the ball with F = curl G .