Search results
Results From The WOW.Com Content Network
Continuous vortex sheet approximation by panel method. Roll-up of a vortex sheet due to an initial sinusoidal perturbation. Note that the integral in the above equation is a Cauchy principal value integral. The initial condition for a flat vortex sheet with constant strength is (,) =. The flat vortex sheet is an equilibrium solution.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
The Sverdrup relation can be derived from the linearized barotropic vorticity equation for steady motion: = / . Here is the geostrophic interior y-component (northward) and is the z-component (upward) of the water velocity. In words, this equation says that as a vertical column of water is squashed, it moves toward the Equator; as it is ...
Carl Rossby proposed in 1939 [4] that, instead of the full three-dimensional vorticity vector, the local vertical component of the absolute vorticity is the most important component for large-scale atmospheric flow, and that the large-scale structure of a two-dimensional non-divergent barotropic flow can be modeled by assuming that is conserved.
In the context of meteorology, a solenoid is a tube-shaped region in the atmosphere where isobaric (constant pressure) and isopycnal (constant density) surfaces intersect, causing vertical circulation. [1] [2] They are so-named because they are driven by the solenoid term of the vorticity equation. [3]
Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows. In general, the presence of viscosity causes a diffusion of vorticity away from the vortex cores into the general flow field; this flow is accounted for by a diffusion term in the vorticity transport equation. [9]
The barotropic vorticity equation assumes the atmosphere is nearly barotropic, which means that the direction and speed of the geostrophic wind are independent of height. In other words, there is no vertical wind shear of the geostrophic wind. It also implies that thickness contours (a proxy for temperature) are parallel to upper level height ...
-component velocity and -component vorticity in a Burgers' vortex layer. Burgers vortex layer or Burgers vortex sheet is a strained shear layer, which is a two-dimensional analogue of Burgers vortex. This is also an exact solution of the Navier–Stokes equations, first described by Albert A. Townsend in 1951. [8]