Search results
Results From The WOW.Com Content Network
The chloride ion is a well known quencher for quinine fluorescence. [2] [3] [4] Quenching poses a problem for non-instant spectroscopic methods, such as laser-induced fluorescence. Quenching is made use of in optode sensors; for instance the quenching effect of oxygen on certain ruthenium complexes allows the measurement of oxygen saturation in
However, quencher fluorescence can increase background noise due to overlap between the quencher and reporter fluorescence spectra. This limitation often necessitates the use of complex data analysis and optical filters. Dark quenchers offer a solution to this problem because they do not occupy an emission bandwidth.
Fluorescence in minerals is caused by a wide range of activators. In some cases, the concentration of the activator must be restricted to below a certain level, to prevent quenching of the fluorescent emission. Furthermore, the mineral must be free of impurities such as iron or copper, to prevent quenching
The efficiency of photochemical quenching (which is a proxy of the efficiency of PSII) can be estimated by comparing to the steady yield of fluorescence in the light and the yield of fluorescence in the absence of photosynthetic light . The efficiency of non-photochemical quenching is altered by various internal and external factors.
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light , that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily ...
is the Stern–Volmer quenching constant, which depends on the chloride concentration, []. in a linear manner. Thus, quinoline-based indicators are one-wavelength dyes - the signal results from monitoring the fluorescence at a single wavelength.
For diffusion-limited quenching (i.e., quenching in which the time for quencher particles to diffuse toward and collide with excited particles is the limiting factor, and almost all such collisions are effective), the quenching rate coefficient is given by = /, where is the ideal gas constant, is temperature in kelvins and is the viscosity of ...
Fluorescence of calcein is quenched strongly by Co 2+, Ni 2+ and Cu 2+ and appreciably by Fe 3+ and Mn 2+ at physiological pH. This fluorescence quenching response can be exploited for detecting the opening of the mitochondrial permeability transition pore (mPTP) and for measuring cell volume changes. [ 5 ]