Search results
Results From The WOW.Com Content Network
If the vehicle is a car, the purpose of downforce is to allow the car to travel faster by increasing the vertical force on the tires, thus creating more grip. If the vehicle is a fixed-wing aircraft, the purpose of the downforce on the horizontal stabilizer is to maintain longitudinal stability and allow the pilot to control the aircraft in pitch.
A substantial amount of downforce is available by understanding the ground to be part of the aerodynamic system in question, hence the name "ground effect". Starting in the mid-1960s, 'wings' were routinely used in the design of race cars to increase downforce (which is not a type of ground effect). Designers shifted their efforts at ...
By utilising the integrated aerodynamic fan, the T.50 can suck the air under the car at a 90-degree angle and provide a significant increase in overall downforce as it provides a laminar flow of air passing over the rear diffuser, thus, creating a greater level of suction in tandem with the Venturi effect, created underneath the car, ahead of ...
Automotive aerodynamics is the study of the aerodynamics of road vehicles. Its main goals are reducing drag and wind noise, minimizing noise emission, and preventing undesired lift forces and other causes of aerodynamic instability at high speeds.
Similar to the "Belgian tourniquet" in cycling, the "slingshot pass" is the most dramatic and widely noted maneuver associated with drafting. A trailing car (perhaps pushed by a line of drafting cars) uses the lead car's wake to pull up with maximum momentum at the end of a straightaway, enters a turn high, and turns down across the lead car's ...
In a car, for example, such an engine with cylinders larger than about 500 cc/30 cuin [citation needed] (depending on a variety of factors) requires balance shafts to eliminate undesirable vibration. These take the form of a pair of balance shafts that rotate in opposite directions at twice engine speed, known as Lanchester shafts, after the ...
Various other characteristics affect the coefficient of drag as well, and are taken into account in these examples. Many sports cars have a surprisingly high drag coefficient, as downforce implies drag, while others are designed to be highly aerodynamic in pursuit of a speed and efficiency, and as a result have much lower drag coefficients.
Some modern race cars employ a passive situational spoiler called a roof flap. The body of the car is designed to generate downforce while driving forward. These roof flaps deploy when the car's body is rotated to travel in reverse, a condition where the body generates lift instead.