Search results
Results From The WOW.Com Content Network
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse. [2]
More tersely: buoyant force = weight of displaced fluid. Archimedes' principle does not consider the surface tension (capillarity) acting on the body, [6] but this additional force modifies only the amount of fluid displaced and the spatial distribution of the displacement, so the principle that buoyancy = weight of displaced fluid remains valid.
A Cartesian diver or Cartesian devil is a classic science experiment which demonstrates the principle of buoyancy (Archimedes' principle) and the ideal gas law.The first written description of this device is provided by Raffaello Magiotti, in his book Renitenza certissima dell'acqua alla compressione (Very firm resistance of water to compression) published in 1648.
The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2] The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV.
The procedure, pioneered by Behnke, Feen and Welham as means to later quantify the relation between specific gravity and the fat content, [1] is based on Archimedes' principle, which states that: The buoyant force which water exerts on an immersed object is equal to the weight of water that the object displaces.
Archimedes is credited with the discovery of Archimedes' Principle, which relates the buoyancy force on an object that is submerged in a fluid to the weight of fluid displaced by the object. The Roman engineer Vitruvius warned readers about lead pipes bursting under hydrostatic pressure.
Fitts's law is a principle of human movement published in 1954 by Paul Fitts which predicts the time required to move from a starting position to a final target area. Fitts's law is used to model the act of pointing, both in the real world, e.g. with a hand or finger, and on a computer, e.g. with a mouse.
An airship operates on the principle of buoyancy, according to Archimedes' principle. In an airship, air is the fluid in contrast to a traditional ship where water is the fluid. The density of air at standard temperature and pressure is 1.28 g/L, so 1 liter of displaced air has sufficient buoyant force to lift 1.28 g.