Search results
Results From The WOW.Com Content Network
a four-tensor with contravariant rank 1 and covariant rank 0. Four-tensors of this kind are usually known as four-vectors . Here the component x 0 = ct gives the displacement of a body in time (coordinate time t is multiplied by the speed of light c so that x 0 has dimensions of length).
A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...
Therefore, there are 3 4 =81 partial differential equations, however due to symmetry conditions, this number reduces to six different compatibility conditions. We can write these conditions in index notation as [4] , = where is the permutation symbol. In direct tensor notation
In the mathematical theory of elasticity, Saint-Venant's compatibility condition defines the relationship between the strain and a displacement field by = (+) where ,. Barré de Saint-Venant derived the compatibility condition for an arbitrary symmetric second rank tensor field to be of this form, this has now been generalized to higher rank symmetric tensor fields on spaces of dimension
An extension of the tensor field idea incorporates an extra line bundle L on M. If W is the tensor product bundle of V with L, then W is a bundle of vector spaces of just the same dimension as V. This allows one to define the concept of tensor density, a 'twisted' type of tensor field.
The rank of a tensor of order 2 agrees with the rank when the tensor is regarded as a matrix, [3] and can be determined from Gaussian elimination for instance. The rank of an order 3 or higher tensor is however often very difficult to determine, and low rank decompositions of tensors are sometimes of great practical interest. [4]
The total number of indices is also called the order, degree or rank of a tensor, [2] [3] [4] although the term "rank" generally has another meaning in the context of matrices and tensors. Just as the components of a vector change when we change the basis of the vector space, the components of a tensor also change under such a transformation.
Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...