When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    To avoid confusion with the "north" and "south" definitions relative to the invariable plane, the poles are called "positive" and "negative." The positive pole is the pole toward which the thumb points when the fingers of the right hand are curled in its direction of rotation. The negative pole is the pole toward which the thumb points when the ...

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    If k 2 is greater than one, F 2 − F 1 is a negative number; thus, the added inverse-cube force is attractive, as observed in the green planet of Figures 1–4 and 9. By contrast, if k 2 is less than one, F 2 − F 1 is a positive number; the added inverse-cube force is repulsive , as observed in the green planet of Figures 5 and 10, and in ...

  5. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  6. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    The Kepler problem is named after Johannes Kepler, who proposed Kepler's laws of planetary motion (which are part of classical mechanics and solved the problem for the orbits of the planets) and investigated the types of forces that would result in orbits obeying those laws (called Kepler's inverse problem). [1]

  7. How to see 6 planets align in a rare night-sky parade in ...

    www.aol.com/where-see-6-planets-align-201701363.html

    Four planets — Venus, Saturn, Jupiter, and Mars — are bright enough to see with the naked eye this month. Uranus and Neptune are visible with a telescope. Uranus and Neptune are visible with a ...

  8. Orbital inclination - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination

    He showed that, for each planet, there is a distance such that moons closer to the planet than that distance maintain an almost constant orbital inclination with respect to the planet's equator (with an orbital precession mostly due to the tidal influence of the planet), whereas moons farther away maintain an almost constant orbital inclination ...

  9. All About January's Rare Planetary Alignment and How to ... - AOL

    www.aol.com/januarys-rare-planetary-alignment...

    Catching a glimpse of the planets will depend on the time of day and their relative distance from the planet at the time. For example, Venus, Saturn and Jupiter are best viewed after sunset at ...