When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Many anomaly detection techniques have been proposed in literature. [1] [22] The performance of methods usually depend on the data sets. For example, some may be suited to detecting local outliers, while others global, and methods have little systematic advantages over another when compared across many data sets.

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.

  5. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    A higher number of trees improves anomaly detection accuracy but increases computational costs. The optimal number balances resource availability with performance needs. For example, a smaller dataset might require fewer trees to save on computation, while larger datasets benefit from additional trees to capture more complexity. [2]

  6. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  7. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Anomaly detection; Data cleaning; ... List of datasets for machine-learning research. ... For example, if a size 1000 dataset consists of two classes, one containing ...

  8. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    This example shows how bagging could be used in the context of diagnosing disease. A set of patients are the original dataset, but each model is trained only by the patients in its bag. The patients in each out-of-bag set can be used to test their respective models.

  9. Leakage (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Leakage_(machine_learning)

    In statistics and machine learning, leakage (also known as data leakage or target leakage) is the use of information in the model training process which would not be expected to be available at prediction time, causing the predictive scores (metrics) to overestimate the model's utility when run in a production environment.