When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 100 prisoners problem - Wikipedia

    en.wikipedia.org/wiki/100_prisoners_problem

    Graph representations of the permutations (1 7 5)(2 4 8)(3 6) and (1 3 7 4 5 8 2)(6) The prison director's assignment of prisoner numbers to drawers can mathematically be described as a permutation of the numbers 1 to 100.

  3. List of permutation topics - Wikipedia

    en.wikipedia.org/wiki/List_of_permutation_topics

    Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...

  4. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  5. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Following this algorithm, the next lexicographic permutation will be [1, 3, 2, 4], and the 24th permutation will be [4, 3, 2, 1] at which point a[k] < a[k + 1] does not exist, indicating that this is the last permutation. This method uses about 3 comparisons and 1.5 swaps per permutation, amortized over the whole sequence, not counting the ...

  6. Josephus problem - Wikipedia

    en.wikipedia.org/wiki/Josephus_problem

    In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.

  7. Superpermutation - Wikipedia

    en.wikipedia.org/wiki/Superpermutation

    In combinatorial mathematics, a superpermutation on n symbols is a string that contains each permutation of n symbols as a substring. While trivial superpermutations can simply be made up of every permutation concatenated together, superpermutations can also be shorter (except for the trivial case of n = 1) because overlap is allowed.

  8. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    In case there are several permutations with this property, let σ denote one with the highest number of integers from {, …,} satisfying = (). We will now prove by contradiction , that σ {\displaystyle \sigma } has to keep the order of y 1 , … , y n {\displaystyle y_{1},\ldots ,y_{n}} (then we are done with the upper bound in ( 1 ), because ...

  9. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    G has 2 fixed points, 1 2-cycle and 3 4-cycles B has 4 fixed points and 6 2-cycles GB has 2 fixed points and 2 7-cycles P * (1,2,3,4) T = (4,1,3,2) T Permutation of four elements with 1 fixed point and 1 3-cycle. In mathematics, the cycles of a permutation π of a finite set S correspond bijectively to the orbits of the subgroup generated by π ...