When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Four-tensor - Wikipedia

    en.wikipedia.org/wiki/Four-tensor

    a four-tensor with contravariant rank 1 and covariant rank 0. Four-tensors of this kind are usually known as four-vectors . Here the component x 0 = ct gives the displacement of a body in time (coordinate time t is multiplied by the speed of light c so that x 0 has dimensions of length).

  3. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Matrix rank should not be confused with tensor order, which is called tensor rank. Tensor order is the number of indices required to write a tensor , and thus matrices all have tensor order 2. More precisely, matrices are tensors of type (1,1), having one row index and one column index, also called covariant order 1 and contravariant order 1 ...

  5. Tensor rank decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_rank_decomposition

    On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3 tensor with probability zero. It is even known that the generic rank-3 real tensor in R 2 ⊗ R 2 ⊗ R 2 {\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb ...

  6. Voigt notation - Wikipedia

    en.wikipedia.org/wiki/Voigt_notation

    Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...

  7. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The rank of a tensor is the minimum number of rank-one tensor that must be summed to obtain the tensor. A rank-one tensor may be defined as expressible as the outer product of the number of nonzero vectors needed to obtain the correct order. Dyadic tensor A dyadic tensor is a tensor of order two, and may be represented as a square matrix. In ...

  8. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The total number of indices is also called the order, degree or rank of a tensor, [2] [3] [4] although the term "rank" generally has another meaning in the context of matrices and tensors. Just as the components of a vector change when we change the basis of the vector space, the components of a tensor also change under such a transformation.

  9. Tensor operator - Wikipedia

    en.wikipedia.org/wiki/Tensor_operator

    In the same way, tensor quantities must be represented by tensor operators. An example of a tensor quantity (of rank two) is the electrical quadrupole moment of the above molecule. Likewise, the octupole and hexadecapole moments would be tensors of rank three and four, respectively.