Search results
Results From The WOW.Com Content Network
This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.
Johnson's formula interpolates between the yield stress of the column material and the critical stress given by Euler's formula. It creates a new failure border by fitting a parabola to the graph of failure for Euler buckling using = () There is a transition point on the graph of the Euler curve, located at the critical slenderness ratio.
If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. [2] Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.
Euler's formula, e ix = cos x + i sin x; Euler's polyhedral formula for planar graphs or polyhedra: v − e + f = 2, a special case of the Euler characteristic in topology; Euler's formula for the critical load of a column: = ()
Euler is well known in structural engineering for his formula giving Euler's critical load, the critical buckling load of an ideal strut, which depends only on its length and flexural stiffness. [ 107 ]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
Then in chapter 8 Euler is prepared to address the classical trigonometric functions as "transcendental quantities that arise from the circle." He uses the unit circle and presents Euler's formula. Chapter 9 considers trinomial factors in polynomials. Chapter 16 is concerned with partitions, a topic in number theory.
Euler’s pump and turbine equations can be used to predict the effect that changing the impeller geometry has on the head. Qualitative estimations can be made from the impeller geometry about the performance of the turbine/pump. This equation can be written as rothalpy invariance: =