Search results
Results From The WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells.
To make comparisons based on dates (e.g., if the current date and time is after some other date and time), first convert the time(s) to the number of seconds after January 1, 1970, using the function {{#time: U }}, then compare (or add, subtract, etc.) those numerical values.
Spaces within a formula must be directly managed (for example by including explicit hair or thin spaces). Variable names must be italicized explicitly, and superscripts and subscripts must use an explicit tag or template. Except for short formulas, the source of a formula typically has more markup overhead and can be difficult to read.
In mathematical formulas, the ± symbol may be used to indicate a symbol that may be replaced by either of the plus and minus signs, + or −, allowing the formula to represent two values or two equations. [2] If x 2 = 9, one may give the solution as x = ±3. This indicates that the equation has two solutions: x = +3 and x = −3.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
Given numbers and , the naive attempt to compute the mathematical function by the floating-point arithmetic ( ()) is subject to catastrophic cancellation when and are close in magnitude, because the subtraction can expose the rounding errors in the squaring.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]